
Using QIIME to analyze 16S rRNA gene sequences from
Microbial Communities

Justin Kuczynski1, Jesse Stombaugh2, William Anton Walters1, Antonio González3, J.
Gregory Caporaso4, and Rob Knight2
1Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder,
CO 80309, USA
2Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
3Department of Computer Science, University of Colorado, Boulder, CO 80309, USA
4Department of Computer Science, Northern Arizona University, Flagstaff, AZ 86011, USA

Abstract
QIIME (canonically pronounced ‘chime’) is software that performs microbial community analysis.
It is an acronym for Quantitative Insights Into Microbial Ecology, and has been used to analyze
and interpret nucleic acid sequence data from fungal, viral, bacterial, and archaeal communities.

The following protocols describe how to install QIIME on a single computer, and use it to analyze
microbial 16S sequence data from 9 distinct microbial communities.

Unit Introduction
A standard QIIME analysis begins with sequence data from one or more sequencing
technologies, such as Sanger, Roche/454, Illumina, or others. Using QIIME to analyze data
from microbial communities consists of typing a series of commands into a terminal
window, and then viewing the graphical and textual output. Some fairly basic familiarity
with a linux style command line interface (i.e. the commands cd, ls, and the use of tab
completion) is useful, though not required.

These protocols illustrate the use of QIIME to process data from a high-throughput 16S
rRNA sequencing study, beginning with multiplexed sequence reads from a 454 sequencing
instrument and finishing with taxonomic and phylogenetic profiles and comparisons of the
samples in the study. Sequence data from Illumina and other platforms may be processed in
a similar manner; see the Troubleshooting section of this unit for resources explaining the
differences.

Rather than listing the analysis steps in general terms, we use an example of data from a
study of the response of mouse gut microbial communities to fasting (Crawford et al., 2009).
To make this example run quickly on a personal computer, we use a subset of the data
generated from 5 animals kept on the control ad libitum fed diet, and 4 animals fasted for 24
hours before sacrifice. At the end of the basic protocols, compare the community structure
of control vs. fasted animals, and in particular, we compare taxonomic profiles of the
microbial communities of both fasted and non-fasted mice, observe differences in diversity
metrics within the samples and between the groups, and perform comparative clustering
analysis to look for overall differences in the samples.

Support protocol 1 covers installation of QIIME, while Basic protocols 1-4 cover analysis of
the mouse gut microbial communities described above.

NIH Public Access
Author Manuscript
Curr Protoc Bioinformatics. Author manuscript; available in PMC 2012 December 1.

Published in final edited form as:
Curr Protoc Bioinformatics. 2011 December ; CHAPTER: Unit10.7. doi:10.1002/0471250953.bi1007s36.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Support protocol 1: Installing QIIME via VirtualBox
QIIME can be run in many environments, from a laptop running windows to a high
performance computer cluster. It includes parallelization of many of the computationally
complex steps, so if an analysis is taking unacceptably long, or requires more resources than
are present on a single machine, it is likely worth investigating the use of QIIME on
Amazon EC2, or installing QIIME natively on a compute cluster. In this protocol we discuss
a simple way of installing QIIME via the VirtualBox for use on a single computer.

Necessary hardware
You will need a computer with a 64 bit processor and the capability of running a 64 bit
operating system as a VirtualBox guest OS. Most modern personal computers running
Windows, Mac OS X, or Linux operating systems qualify. You will also need about 10 GB
of free storage, and approximately 2 GB of memory.

1. Download and install the VirtualBox (VB) version for your machine from
http://www.virtualbox.org/.

2. Download the 64-bit QIIME Virtual Box from
http://bmf.colorado.edu/QIIME/QIIME-1.3.0-amd64.vdi.gz.

This file is large (>1GB) so it may take between a few minutes and a few
hours depending on your Internet connection speed. You will need to
unzip this file, which you can typically do by double-clicking on it.

3. Launch VirtualBox, and create a new machine (press the New button).

4. A new window will appear. Click ‘Next’ or ‘Continue’.

5. In this screen type QIIME as the name for the virtual machine. Then select Linux as
the Operating System, and Ubuntu (64 bit) as the version. Click ‘Next’ or
‘Continue’.

6. Select the amount of RAM (memory). You will need at least 1024MB, but the best
option is based on your machine. If you are unsure, select 1024MB. After selecting
the amount of RAM, click ‘Next’ or ‘Continue’.

7. Select ‘Use existing hard drive’, and click the folder icon next to the selector (it has
a green up arrow). In the new window click ‘Add’, and locate the virtual hard drive
that was downloaded in step 2. Click Select and then click ‘Next’ or ‘Continue’.

8. In the new window click Finish.

9. Double-click on the new virtual machine created (it will be called QIIME) to boot it
for the first time.

Basic Protocol 1: Acquiring an example study and demultiplexing DNA
sequences

Basic protocol 1 represents the first analysis steps typically performed on 16S DNA
sequence data from microbial communities. Basic protocol 1 consists of acquiring an
example dataset, and assigning the DNA sequences in that study to the 9 microbial
communities included in the study. In typical usage, a researcher would substitute the data
produced by a sequencing platform for the example data used here.

Kuczynski et al. Page 2

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.virtualbox.org/
http://bmf.colorado.edu/QIIME/QIIME-1.3.0-amd64.vdi.gz


Necessary hardware
A functional installation of the QIIME VirtualBox is required; see support protocol 1 for
hardware requirements of the QIIME VirtualBox.

1. Install the QIIME VirtualBox as described in Support Protocol 1, and start the
virtualbox.

2. First insstall a few files that are used when aligning 16S DNA sequences.

Inside the QIIME VirtualBox, click on the black box with a > symbol on the top of
the screen, which will open a terminal window (see figure 1). Then install the
greengenes 16S alignment and lanemask, which will be used later to align
sequences and filter out hypervariable regions.

To do this, type:

wget
http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/
core_set_aligned.fasta.imputed

(on a single line, with a space only after “wget”). Hit enter, and then execute the
following command:

wget
http://greengenes.lbl.gov/Download/Sequence_Data/lanemask_in_1s_and_0s

3. Next acquire data from an example experiment. In the terminal window, type:

wget http://bmf.colorado.edu/QIIME/qiime_tutorial-v1.3.0.zip

unzip qiime_tutorial-v1.3.0.zip

cd qiime_tutorial-v1.3.0

The files present in this directory are examples provided by the QIIME developers;
they include the following:

Sequences (.fna)

This is the 454-machine generated FASTA file. Using the Amplicon processing
software on the 454 FLX standard, each region of the PTP plate will yield a fasta
file of form 1.TCA.454Reads.fna, where “1” is replaced with the appropriate region
number. For the purposes of this tutorial, we use the fasta file
Fasting_Example.fna.

Quality Scores (.qual)

This is the 454-machine generated quality score file, which contains a score for
each base in each sequence included in the FASTA file. Like the fasta file
mentioned above, the Amplicon processing software will generate one of these files
for each region of the PTP plate, named 1.TCA.454Reads.qual, etc. For the
purposes of this tutorial, we use the quality scores file Fasting_Example.qual.

Mapping File (Tab-delimited.txt)

The mapping file is generated by the user. This file contains all of the information
about the samples necessary to perform the data analysis. At a minimum, the
mapping file should contain the name of each sample, the barcode sequence used
for each sample, the linker/primer sequence used to amplify the sample, and a
Description column. In general, you should also include in the mapping file any
metadata that relates to the samples (for instance, health status or sampling site)

Kuczynski et al. Page 3

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/core_set_aligned.fasta.imputed
http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/core_set_aligned.fasta.imputed
http://greengenes.lbl.gov/Download/Sequence_Data/lanemask_in_1s_and_0s
http://bmf.colorado.edu/QIIME/qiime_tutorial-v1.3.0.zip


and any additional information relating to specific samples that may be useful to
have at hand when considering outliers (for example, what medications a patient
was taking at time of sampling). Of note: the sample names may only contain
alphanumeric characters (A-z,0-9) and the dot (.). Full format specifications can be
found in the Documentation (File Formats).

The Mapping file here is named Fasting_Map.txt. The contents of the mapping file
are shown infigure 2. A nucleotide barcode sequence is provided for each of the 9
samples, as well as metadata related to treatment group and date of birth, and
general run descriptions about the project.

4. Check the mapping file.

Before beginning with QIIME, you should ensure that your mapping file is
formatted correctly with the check_id_map.py script. Type:

check_id_map.py -m Fasting_Map.txt -o mapping_output

This module will display a message indicating whether or not problems were found
in the mapping file. Errors and warnings will the output to a log file, which will be
present in the specified (-o) output directory. Errors will cause fatal problems with
subsequent scripts and must be corrected before moving forward. Warnings will
not cause fatal problems, but it is encouraged that you fix these problems as they
are often indicative of typos in your mapping file, invalid characters, or other
unintended errors that will impact downstream analysis. A corrected_mapping.txt
file will also be created in the output directory, which will have a copy of the
mapping file with invalid characters replaced, or a message indicating that no
invalid characters were found.

5. Assign multiplexed reads to biological samples.

The next task is to assign the multiplexed reads to samples based on their
nucleotide barcode. Also, this step performs quality filtering based on the
characteristics of each sequence, removing any low quality or ambiguous reads.
The script for this step is split_libraries.py. A full description of parameters for this
script are described in the Documentation. For this tutorial, we will use default
parameters (minimum quality score = 25, minimum/maximum length = 200/1000,
error-correcting golay 12 nucleotide barcodes, no ambiguous base calls, and no
mismatches allowed in the primer sequence).

Type:

split_libraries.py -m Fasting_Map.txt -f Fasting_Example.fna -q
Fasting_Example.qual -o split_library_output

This invocation will create three files in the new directory split_library_output/ :

• split_library_log.txt:This file contains the summary of splitting, including
the number of reads detected for each sample and a brief summary of any
reads that were removed due to quality considerations.

• histograms.txt : This tab delimited file shows the number of reads at
regular size intervals before and after splitting the library.

6. seqs.fna : This is a fasta formatted file where each sequence is renamed according
to the sample it came from. The header line also contains the name of the read in
the input fasta file and information on any barcode errors that were corrected.

A few lines from the seqs.fna file are shown below:

Kuczynski et al. Page 4

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



>PC.634_1 FLP3FBN01ELBSX orig_bc=ACAGAGTCGGCT
new_bc=ACAGAGTCGGCT

bc_diffs=0

CTGGGCCGTGTCTCAGTCCC…

>PC.634_2 FLP3FBN01EG8AX orig_bc=ACAGAGTCGGCT
new_bc=ACAGAGTCGGCT

bc_diffs=0

TTGGACCGTGTCTCAGTTCCAATGT…

>PC.354_3 FLP3FBN01EEWKD orig_bc=AGCACGAGCCTA
new_bc=AGCACGAGCCTA

bc_diffs=0

TTGGGCCGTGTCTCA…

Basic Protocol 2: Picking OTUs, assigning taxonomy, inferring phylogeny,
and creating an OTU table

Basic Protocol 2 consists of picking Operational Taxonomic Units (OTUs) based on
sequence similarity within the reads, and picking a representative sequence from each OTU.
The protocol also assigns taxonomic identities using reference databases, aligns the OTU
sequences, creates a phylogenetic tree, and constructs an OTU table, representing the
abundance of each OTU in each microbial sample. Basic Protocol 2 requires demultiplexed
sequences such as those generated in the seqs.fna file from Basic Protocol 1.

Necessary hardware
A functional installation of the QIIME VirtualBox is required, see support protocol 1 for
hardware requirements of the QIIME VirtualBox.

1. Run the pick_otus_through_otu_table.py workflow, which performs a series of
small steps by calling a series of other scripts automatically.

This workflow consists of the following stages:

a. Picking OTUs (for more information, refer to pick_otus.py)

b. Picking a representative sequence set, one sequence from each OTU (for
more information, refer to pick_rep_set.py)

c. Assigning taxonomy to the representative sequence set (for more
information, refer to assign_taxonomy.py)

d. Aligning the representative sequence set (for more information, refer to
align_seqs.py)

e. Filtering the alignment prior to tree building and removing positions
which are all gaps, or not useful for phylogenetic inference (for more
information, refer to filter_alignment.py)

f. Building a phylogenetic tree (for more information, refer to
make_phylogeny.py)

g. Building an OTU table (for more information, refer to make_otu_table.py)

Kuczynski et al. Page 5

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Using the output from split_libraries.py (the seqs.fna file), run the following
command:

pick_otus_through_otu_table.py -i split_library_output/seqs.fna -o otus

The results of pick_otus_through_otu_table.py are in otus/, and a description of the
steps performed and the results follow.

2. Inspect the results of taxonomy assignment.

QIIME has performed a series of analysis stages, following the
pick_otus_through_otu_table.py command from step 1. In this step we inspect the
results of stage (c), but first describe stages (a) through (c).

At stage (a), all of the sequences from all of the samples are clustered into
Operational Taxonomic Units (OTUs) based on their sequence similarity. OTUs in
QIIME are clusters of sequences, frequently intended to represent some degree of
taxonomic relatedness. For example, when sequences are clustered at 97%
sequence similarity with uclust, each resulting cluster is typically thought of as
representing a species. This model and the current techniques for picking OTUs are
inherently limited, however, in that 97% OTUs do not match what humans have
called species for many microbes. Determining exactly how OTUs should be
defined, and what they represent, is an active area of research.

pick_otus_through_otu_table.py assigns sequences to OTUs at 97% similarity by
default. Further information on how to view and change default behavior is
discussed later.

Since each OTU may be made up of many related sequences, at stage (b) QIIME
picks a representative sequence from each OTU for downstream analysis. This
representative sequence will be used for taxonomic identification of the OTU and
phylogenetic alignment. QIIME uses the OTU file created above and extracts a
representative sequence from the fasta file by one of several methods.

In the otus/rep_set/ directory, QIIME has created two new files - the log file
seqs_rep_set.log and the fasta file seqs_rep_set.fasta containing one representative
sequence for each OTU. In this fasta file, the sequence has been renamed by the
OTU, and the additional information on the header line reflects the sequence used
as the representative:

>0 PC.636_424
CTGGGCCGTATCTCAGTCCCAATGTGGCCGGTCGACCTCTC….

>1 PC.481_321
TTGGGCCGTGTCTCAGTCCCAATGTGGCCGTCCGCCCTCTC….

A primary goal of the QIIME pipeline is to assign high-throughput sequencing
reads to taxonomic identities using established databases. Stage (c) provides
information on the microbial lineages found in microbial samples. By default,
QIIME uses the Ribosomal Database Project (RDP) classifier to assign taxonomic
data to each representative sequence from stage (b).

In the directory otus/rdp_assigned_taxonomy/, there will be a log file and a text
file. The text file contains a line for each OTU considered, with the RDP taxonomy
assignment and a numerical confidence of that assignment (1 is the highest possible
confidence). For some OTUs, the assignment will be as specific as a bacterial
species, while others may be assignable to nothing more specific than the bacterial
domain.

Kuczynski et al. Page 6

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Inspect the first few lines of the taxonomy assignment file by entering the
command:

head

otus/rdp_assigned_taxonomy/seqs_rep_set_tax_assignments.txt

The first few lines of the text file should resemble those shown in figure 3.

3. Inspect the phylogenetic tree.

To infer the phylogenetic relationships relating the sequences, QIIME aligns the
sequences in stage (d). Alignments can either be generated de novo using programs
such as MUSCLE (Edgar, 2004), or through assignment to an existing alignment
with tools like PyNAST (Caporaso et al., 2010). For small studies such as this
tutorial, either method is possible. However, for studies involving many sequences
(roughly, more than 1000), the de novo aligners are very slow and alignment with
PyNAST is preferred. Since this is one of the most computationally intensive
bottlenecks in the pipeline, large studies benefit greatly from parallelization of this
task (described later): When using PyNAST as an aligner (the default), QIIME
must know the location of a template alignment. Most QIIME installations use the
greengenes file ‘core_set_aligned.fasta.imputed’ by default.

After aligning the sequences, a log file and an alignment file are created in the
directory otus/pynast_aligned_seqs/.

Before inferring a phylogenetic tree relating the sequences, it is beneficial to filter
the sequence alignment to removed columns comprised of only gaps, and locations
known to be excessively variable. Most QIIME installations use a lanemask file
named either lanemask_in_1s_and_0s.txt or lanemask_in_1s_and_0s by default.
Filtering is stage (e), and after filtering, a filtered alignment file is created in the
directory otus/pynast_aligned_seqs/.

In stage (f) the filtered alignment file produced in the directory otus/
pynast_aligned_seqs/ is then used to build a phylogenetic tree using a tree-building
program.

The Newick format tree file is written to rep_set.tre, which is located in the otus/
directory. This file can be viewed in a tree visualization software, and is necessary
for UniFrac diversity measurements and other phylogenetically aware analyses
(described below).

To view the newick formatted tree as text, type:

less otus/rep_set.tre

type ‘q’ when finished.

The tree obtained can also be visualized with programs such as FigTree
(http://tree.bio.ed.ac.uk/software/figtree/), which was used to visualize the
phylogenetic tree obtained from rep_set.tre in figure 4.

4. View statistics of the OTU table

Using taxonomic assignments (stage c) and the OTU map (stage a) QIIME
assembles a readable matrix of OTU abundance in each sample with meaningful
taxonomic identifiers for each OTU.

The result of this step is otu_table.txt, which is located in the otus/ directory. The
first few lines of otu_table.txt are shown below (OTUs 1-9), where the first column
contains the OTU number, the last column contains the taxonomic assignment for

Kuczynski et al. Page 7

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://tree.bio.ed.ac.uk/software/figtree/


the OTU, and 9 columns between are for each of our 9 samples. The value of each
i,j entry in the matrix is the number of times OTU i was found in the sequences for
sample j.

To view the number of sequence reads that were assigned to each biological sample
in the OTU table (otus/otu_table.txt), type:

per_library_stats.py -i otus/otu_table.txt

The output shows that there are relatively few sequences in this tutorial example,
but the sequences present are fairly evenly distributed among the 9 microbial
communities. The output is shown below:

Num samples: 9

Seqs/sample summary: Min: 146

Max: 150

Median: 148.0

Mean: 148.111111111

Std. dev.: 1.4487116456

Median Absolute Deviation: 1.0

Default even sampling depth in core_qiime_analyses.py (just a suggestion):
146

Seqs/sample detail:

PC.355: 146

PC.481: 146

PC.636: 147

PC.354: 148

PC.635: 148

PC.593: 149

PC.607: 149

PC.356: 150

PC.634: 150

5. View a heatmap of the OTU table.

The QIIME pipeline includes a useful utility to generate images of the OTU table.
The script is make_otu_heatmap_html.py. Type:

make_otu_heatmap_html.py -i otus/otu_table.txt -o otus/OTU_Heatmap/

An html file is created in the directory otus/OTU_Heatmap/. In the menu bar at the
top of the Virtualbox window, select Places: Home Folder, navigate to
qiime_totorial-v1.3.0/otus/OTU_Heatmap, and double-click ‘otu_table.html’. You
will be prompted to enter a value for “Filter by Counts per OTU”. Leave the filter
value unchanged, and click the “Sample ID” button, and a graphic will be
generated. For each sample, you will see in a heatmap the number of times each
OTU was found in that sample. Mouse over any individual count to get more
information on the OTU (including taxonomic assignment). Within the mouseover,

Kuczynski et al. Page 8

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



there is a link for the terminal lineage assignment, so you can easily search Google
for more information about that assignment (see figure 5).

Only OTUs with total counts at or above the threshold specified by ‘Filter by
counts OTU’ will be displayed. The OTU heatmap displays raw OTU counts per
sample, where the counts are colored based on the contribution of each OTU to the
total OTU count present in that sample (blue: contributes low percentage of OTUs
to sample; red: contributes high percentage of OTUs).

Alternatively, you can click on one of the counts in the heatmap and a new pop-up
window will appear. The pop-up window uses a Google Visualization API called
Magic-Table. Depending on which table count you clicked on, the pop-up window
will put the clicked-on count in the middle of the pop-up heatmap (figure 6).

On the original heatmap webpage, click the “Taxonomy” button: you will generate
a heatmap keyed by taxon assignment, which allows you to conveniently look for
organisms and lineages of interest in your study. Again, mousing over an individual
count will show additional information for that OTU and sample (figure 7).

6. View taxonomic summary information for each community

Next, group OTUs by different taxonomic levels (division, class, family, etc.) with
the workflow script summarize_taxa_through_plots.py. Note that this process
depends directly on the method used to assign taxonomic information to OTUS
(see Assign Taxonomy above). In the (black) terminal, type:

summarize_taxa_through_plots.py -i otus/otu_table.txt -o wf_taxa_summary -
m Fasting_Map.txt

The script will generate a new table grouping sequences by taxonomic assignment
at various levels, for example the phylum level table at: wf_taxa_summary/
Taxa_Charts/otu_table_L3.txt.

The value of each i,j entry in the matrix is the count of the number of times all
OTUs belonging to the taxon i (for example, Phylum Actinobacteria) were found in
the sequences for sample j.

To view the resulting charts, again go to Places: Home Folder in the menubar,
navigate to qiime_tutorial-v1.3.0/wf_taxa_summary, and open the area_charts html
file located in the taxa_summary_plots/ folder. The area chart (figure 8) shows the
taxa assignments for each sample as an area chart; the same information is
available as a bar chart (figure 9). Mouseover the plot to see which taxa are
contributing to the percentage shown.

Basic Protocol 3: Alpha Diversity within Samples and Rarefaction Curves
Basic protocol 3 consists of computing the within community diversity (alpha diversity) for
each of the 9 microbial communities, and generating rarefaction curves (graphs of diversity
vs. sequencing depth). Basic protocol 3 requires an OTU table and phylogenetic tree such as
those produced in basic protocol 2.

Necessary hardware
A functional installation of the QIIME VirtualBox is required, see support protocol 1 for
hardware requriements of the QIIME VirtualBox.

1. Run the alpha diversity workflow.

Kuczynski et al. Page 9

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Community ecologists use a variety of techniques to describe the microbial
diversity within their study. This diversity can be assessed within a community
(alpha diversity) or between a collection of samples (beta diversity). Here, we will
determine the level of alpha diversity in our samples with QIIME. To perform this
analysis, we will use the alpha_rarefaction.py workflow script. This script performs
the following stages:

a. Generate rarefied OTU tables (for more information, refer to
multiple_rarefactions.py)

b. Compute measures of alpha diversity for each rarefied OTU table (for
more information, refer to alpha_diversity.py)

c. Collate alpha diversity results (for more information, refer to
collate_alpha.py)

d. Generate alpha diversity rarefaction plots (for more information, refer to
make_rarefaction_plots.py)

Although we could run this workflow with the (sensible) default parameters, this
provides an excellent opportunity to illustrate the use of custom parameters.

To see what measures of alpha diversity will be computed by default, type:

alpha_diversity.py -h

You should see, among other information:

-m METRICS, --metrics=METRICS

Alpha-diversity metric(s) to use. A comma-separated list should be
provided when multiple metrics are specified. [default:
PD_whole_tree,chao1,observed_species]

to also use the shannon index (an alpha diversity measure derived from information
theory) create a custom parameters file by typing:

echo “alpha_diversity:metrics
shannon,PD_whole_tree,chao1,observed_species” >

alpha_params.txt

Then run the workflow, which requires the OTU table (-i) and phylogenetic tree (-t)
from section above, and the custom parameters file we just created:

alpha_rarefaction.py -i otus/otu_table.txt -m Fasting_Map.txt -p
alpha_params.txt -t otus/rep_set.tre -o wf_arare/

Descriptions of the steps involved in alpha_rarefaction.py follow:

The directory wf_arare/rarefaction/ will contain many text files named
rarefaction_##_#.txt; the first set of numbers represents the number of sequences
sampled, and the last number represents the iteration number. If you opened one of
these files (created in stage (a)), you would find an OTU table where for each
sample the sum of the counts equals the number of samples taken.

The rarefaction tables are the basis for calculating diversity metrics, which reflect
the diversity within the sample based on the abundance of various taxa within a
community. The QIIME pipeline allows users to conveniently calculate more than
two dozen different diversity metrics. The full list of available metrics is available
here. Every metric has different strengths and limitations - technical discussion of

Kuczynski et al. Page 10

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



each metric is readily available online and in ecology textbooks, but it is beyond
the scope of this document. By default, QIIME calculates three metrics:

a. Chao1 metric estimates the species richness.

b. The Observed Species metric is simply the count of unique OTUs found in
the sample.

c. Phylogenetic Distance (PD_whole_tree) is the only phylogenetic metric
used. It requires a phylogenetic tree, which is frequently generated earlier
in the analysis (see Basic Protocol 2)

d. In addition, alpha_params.txt specified above adds the shannon index to
the list of alpha diversity measures calculated by QIIME. The shannon
index is the information entropy of the observed OTU abundances, and
accounts for both richness and evenness.

The result of stage (b) produced several text files with the results of the alpha
diversity computations performed on the rarefied OTU tables. The results are
located in the wf_arare/alpha_div/ directory.

The output directory wf_arare/alpha_div/ contains one text file
alpha_rarefaction_##_# for every file input from wf_arare/rarefaction/, where the
numbers represent the number of samples and iterations as before. The content of
this tab delimited file is the calculated metrics for each sample. To collapse the
individual files into a single combined table, the workflow (in stage (c)) used the
script collate_alpha.py.

In the newly created directory wf_arare/alpha_div_collated/, there will be one
matrix for every alpha diversity metric used. This matrix will contain the metric for
every sample, arranged in ascending order from lowest number of sequences per
sample to highest.

QIIME creates plots of alpha diversity vs. simulated sequencing effort, known as
rarefaction plots, using the script make_rarefaction_plots.py, in stage (d). This
script takes a mapping file and any number of rarefaction files generated by
collate_alpha.py and creates rarefaction curves. Each curve represents a sample and
can be colored by the sample metadata supplied in the mapping file.

This step generates a wf_arare/alpha_rarefaction_plots/rarefaction_plots.html that
can be opened with a web browser, in addition to other files. The wf_arare/
alpha_rarefaction_plots/average_plots/ folder contains the average plots for each
metric and category and the alpha_rarefaction_plots/html_plots/ folder contains all
the images used in the html page generated.

2. View the rarefaction plots.

Open wf_arare/alpha_rarefaction_plots/rarefaction_plots.html in a web browser by double-
clicking on it. Once the browser window is open, select the metric PD_whole_tree and the
category Treatment, to reveal a plot like figure 10. Turn on/off lines in the plot by
(un)checking the box next to each label in the legend, and experiment with clicking on the
triangle next to each label in the legend to see all the samples that contribute to that
category.

Below each plot is a table displaying average values for each measure of alpha diversity for
each group of samples the specified category.

Kuczynski et al. Page 11

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Basic Protocol 4: Beta diversity between samples and beta diversity plots
Basic protocol 4 consists of computing the between community diversity (beta diversity) for
each of the nine microbial communities, and generating Principal Coordinates Analysis
(PCoA) plots and distance histograms representing the relationships among the nine
microbial communities (for background, see e.g. Legendre, 1998). Basic Protocol 4 requires
an OTU table and phylogenetic tree such as those produced in Basic Protocol 2.

Necessary resources
The OTU table and Phylogenetic tree produced in Basic Protocol 2, and the mapping file
from Basic Protocol 1.

1. Run the beta diversity workflow.

Beta diversity represents the explicit comparison of microbial (or other)
communities based on their composition. Beta-diversity metrics thus assess the
differences between microbial communities. The fundamental output of these
comparisons is a square matrix where a “distance” or dissimilarity is calculated
between every pair of community samples, reflecting the dissimilarity between
those samples. The data in this distance matrix can be visualized with analyses such
as Principal Coordinate Analysis (PCoA) and hierarchical clustering. Like alpha
diversity, there are many possible metrics which can be calculated with the QIIME
pipeline. Here, we will calculate beta diversity between our 9 microbial
communities using the default beta diversity metrics of weighted and unweighted
unifrac, which are phylogenetic measures used extensively in recent microbial
community sequencing projects.

For this analysis we use the script jackknifed_beta_diversity.py, which performs a
series of analyses consisting of the following stages:

a. Compute the beta diversity distance matrix from the full OTU table (and
tree, if applicable) (for more information, refer to beta_diversity.py)

b. Build UPGMA tree from full distance matrix; (for more information, refer
to upgma_cluster.py)

c. Build rarefied OTU tables (for more information, refer to
multiple_rarefactions.py)

d. Compute distance matrices for rarefied OTU tables (for more information,
refer to beta_diversity.py)

e. Build UPGMA trees from rarefied distance matrices (for more
information, refer to upgma_cluster.py)

f. Compare rarefied UPGMA trees and determine jackknife support for tree
nodes. (for more information, refer to tree_compare.py and
consensus_tree.py)

g. Compute principal coordinates on each rarefied distance matrix (for more
information, refer to principal_coordinates.py)

h. Compare rarefied principal coordinates plots from each rarefied distance
matrix (for more information, refer to make_3d_plots.py and
make_2d_plots.py)

To run the analysis, type the following:

Kuczynski et al. Page 12

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



jackknifed_beta_diversity.py -i otus/otu_table.txt -t otus/rep_set.tre -m
Fasting_Map.txt -o wf_jack -e 110

2. Create a jackknife supported tree, and view the result.

Unweighted Pair Group Method with Arithmetic mean (UPGMA) is type of
hierarchical clustering method using average linkage and can be used to interpret
the distance matrix produced by beta_diversity.py. Stages (a) and (b) produced a
newick formatted tree relating the samples, at wf_jack/unweighted_unifrac/
otu_table_upgma.tre

To measure the robustness of this result to sequencing effort, QIIME performs a
jackknifing analysis, wherein a smaller number of sequences are chosen at random
from each sample, and the resulting UPGMA tree from this subset of data is
compared with the tree representing the entire available data set. This process is
repeated with many random subsets of data, and the tree nodes that prove more
consistent across jackknifed datasets are deemed more robust (stages (c) through
(f)).

First the jackknifed OTU tables were generated, by subsampling the full available
data set. In this tutorial, each sample initially contained between 146 and 150
sequences. To ensure that a random subset of sequences is selected from each
sample, select 110 sequences from each sample (75% of the smallest sample,
though this value is only a guideline), which was designated by the “-e” option
when running the workflow script above.

More jackknife replicates provide a better estimate of the variability expected in
beta diversity results, but at the cost of longer computational time. By default,
QIIME generates 10 jackknife replicates of the available data. Each replicate is a
simulation of a smaller sequencing effort (110 sequences in each sample, as defined
below). The workflow then calculated the distance matrix for each jackknifed
dataset, but now in batch mode, which resulted in two sets of 10 distance matrix
files written to the wf_jack/unweighted_unifrac/rare_dm/ and wf_jack/
weighted_unifrac/rare_dm/ directories. Each of those was then used as the basis for
hierarchical clustering with UPGMA, written to the wf_jack/unweighted_unifrac/
rare_upgma/ and wf_jack/weighted_unifrac/rare_upgma/ directories.

UPGMA clustering of the 10 distance matrix files results in 10 hierarchical clusters
of the 9 mouse microbial communities, each hierarchical cluster based on a random
sub-sample of the available sequence data.

This compares the UPGMA clustering based on all available data with the
jackknifed UPGMA results. Three files are written to wf_jack/unweighted_unifrac/
upgma_cmp/ and wf_jack/weighted_unifrac/upgma_cmp/ :

• master_tree.tre, which is virtually identical to jackknife_named_nodes.tre
but each internal node of the UPGMA clustering is assigned a unique
name

• jackknife_named_nodes.tre

• jackknife_support.txt, which explains how frequently a given internal
node had the same set of descendant samples in the jackknifed UPGMA
clusters as it does in the UPGMA cluster using the full available data. A
value of 0.5 indicates that half of the jackknifed data sets support that
node, while 1.0 indicates perfect support.

Kuczynski et al. Page 13

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



jackknife_named_nodes.tre can be viewed with FigTree or another tree-viewing
program. However, as an example, we can visualize the bootstrapped tree using
QIIME's make_bootstrapped_tree.py, as follows.

Type:

make_bootstrapped_tree.py -m

wf_jack/unweighted_unifrac/upgma_cmp/master_tree.tre -s

wf_jack/unweighted_unifrac/upgma_cmp/jackknife_support.txt -o

wf_jack/unweighted_unifrac/upgma_cmp/jackknife_named_nodes.pdf

Open the resulting pdf by typing:

gnome-open wf_jack/unweighted_unifrac/upgma_cmp/
jackknife_named_nodes.pdf

Figure 11 shows the tree with internal nodes colored, red for 75-100% support,
yellow for 50-75%, green for 25-50%, and blue for < 25% support. Although PC.
354 and PC.593 cluster together, we do not have high confidence in that result.
However, there is excellent jackknife support for all fasted samples (PC.6xx)
clustered together, separate from the non-fasted) samples.

3. Inspect the jackknife-supported PCoA plots.

The jackknifed replicate PCoA plots created in stages (g) and (h) can be compared to assess
the degree of variation from one replicate to the next. QIIME displays this variation by
displaying confidence ellipsoids around the samples represented in a PCoA plot.

Navigate to wf_jack/unweighted_unifrac/3d_plots/and open
‘pcoa_unweighted_unifrac_rarefaction_110_0_3D_PCoA_plots.html’. Scroll down the top
right corner of the window that appears to select ‘Treatment_unscaled’.

Example results are shown in figure 12. By default, the script will plot the first three
dimensions in your file. Other combinations can be viewed using the “Views:Choose
viewing axes” option in the KiNG viewer. The first 10 components can be viewed using
“Views:Parallel coordinates” option or typing “/”.

Commentary
Background Information

Sequence based microbial ecology studies, which encompass whole metagenome shotgun
metagenomics, metatranscriptomics, and amplicon (e.g. 16S rRNA) sequencing, are
increasingly prevalent, and increasingly large in scale. The usefulness of a powerful analysis
pipeline is thus apparent. However, given the rapid ongoing progression of sequencing
technologies (Quail et al., 2008; Schwartz et al. 2010), as well as the increase in our
understanding of how microbial communities are structured, and how they differ across
habitats and times (Arumugam et al., 2011; Caporaso et al., 2011), the development of
computational tools must keep pace with a continually and quickly changing set of
objectives. Speaking to this, one of the key design decisions in the development of QIIME
was the choice to use existing implementations of algorithms (tools such as FastTree for
heuristic based maximum-likelihood phylogeny inference (Price et al., 2010), the RDP
classifier for the assignment of taxonomic data using a naïve bayesian classifier (Wang et
al., 2007), and others). This allows QIIME, which continues to undergo development, to
easily and relatively quickly adapt novel standalone tools, and thus improve in step with
advances in the field of microbial community ecology.

Kuczynski et al. Page 14

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



QIIME includes broad workflow scripts to abstract out some of the complexity of the
analysis of microbial sequence analysis. QIIME scripts have sensible default values for most
parameters of interest, thus allowing users to obtain reasonable results without requiring
detailed decision making at each step of the (typically) long analysis process. However,
researchers with unique needs, or preferences for alternative approaches (e.g. different
measures of between community beta-diversity, or different reference databases for
taxonomic identification), are easily able to customize the behavior of QIIME, simply by
modifying settings away from their default values. QIIME, while a powerful and by
necessity somewhat complex analysis pipeline, also performs straightforward analyses with
a minimum of user intervention, while making clear the default protocols that have been
performed.

Critical Parameters
The data used in these protocols is intentionally limited, to allow for faster execution times.
However, many analyses will contain significantly more sequences, and thus will benefit
significantly from the parallelization of many analysis steps.

Most of these steps can be run using the workflow scripts, some of which were mentioned
above. To run the workflow scripts in parallel, pass the “-a” option to each of the scripts,
and optionally the “-O” option to specify the number of parallel jobs to start. If running on a
quad-core computer, one can set the number of jobs to start as 4 for one of the workflow
scripts as follows:

pick_otus_through_otu_table.py -i split_library_output/seqs.fna -o otus -a -O 4

Troubleshooting
All scripts it QIIME have built in help, accessible by typing script_name.py -h. In addition,
documentation exists at www.qiime.org, and the help forum at http://forum.qiime.org is
typically quite active and useful.

Literature Cited
Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R. PyNAST: a flexible

tool for aligning sequences to a template alignment. Bioinformatics. 2010; 26:266–7. [PubMed:
19914921]

Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity.
BMC Bioinformatics. 2004; 19;5:113.

Legendre, P.; Legendre, L. Numerical Ecology. Elsevier Science; 1998.
Crawford PA, Crowley JR, Sambandam N, Muegge BD, Costello EK, Hamady M, Knight R, Gordon

JI. Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient
deprivation. Proceedings of the National Academy of Sciences USA. 2009; 106:11276–11281.

Quail MA, Kozarewa I, Smith FA, Scally P, Stephens J, Durbin R, Swerdlow H, Turner DJ. A large
genome center's improvements to the illumina sequencing system. Nature methods. 2008; 5(12):
1005–1010. [PubMed: 19034268]

Schwartz DC, Waterman MS. New generations: Sequencing machines and their computational
challenges. Journal of Computer Science and Technology. 2010; 25(1):3–9. [PubMed: 22121326]

Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T,
Batto JM, et al. Enterotypes of the human gut microbiome. Nature. 2011

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight
R. Global patterns of 16s rrna diversity at a depth of millions of sequences per sample. Proceedings
of the National Academy of Sciences. 2011; 108:4516.

Price MN, Dehal PS, Arkin AP. Fasttree 2–approximately maximum-likelihood trees for large
alignments. PLoS One. 2010; 5(3):e9490. [PubMed: 20224823]

Kuczynski et al. Page 15

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.qiime.org
http://forum.qiime.org


Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive bayesian classifier for rapid assignment of rrna
sequences into the new bacterial taxonomy. Applied and environmental microbiology. 2007;
73(16):5261. [PubMed: 17586664]

Kuczynski et al. Page 16

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
A screenshot of the QIIME Virtualbox, with the terminal icon indicated, and a terminal
window open.

Kuczynski et al. Page 17

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Contents of the mapping file (Fasting_Map.txt). Note that the SampleIDs contain only
letters, numbers, and period characters.

Kuczynski et al. Page 18

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
The first few lines of the taxonomy assignment file, showing on each line the OTU
identifier, the representative sequence identifier, the taxonomy assigned to that sequence,
and the confidence in that assignment.

Kuczynski et al. Page 19

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
A visualization of the phylogenetic tree using FigTree. The tips are unlabeled here, but can
be inspected interactively.

Kuczynski et al. Page 20

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
An OTU table heatmap, showing the relative abundance of each OTU within each microbial
community.

Kuczynski et al. Page 21

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Magic-Table visualization of the OTU table heatmap.

Kuczynski et al. Page 22

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
An OTU table heatmap showing taxonomy assignment for each OTU.

Kuczynski et al. Page 23

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
An area chart showing the relative abundance of each phylum within each microbial
community.

Kuczynski et al. Page 24

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 9.
A bar chart of phylum level abundance within communities, similar to figure 8.

Kuczynski et al. Page 25

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 10.
A web browser window displaying rarefaction plots. The vertical axis displays the diversity
of the community, while the horizontal axis displays the number of sequences considered in
the diversity calculation. Each line on the figure represents the average of all microbial
belonging to a group within a category: here the green line represents all fasted mouse
communities, and the blue line represents the control communities.

Kuczynski et al. Page 26

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 11.
A visualization of bootstrap-supported hierarchical clustering of the 9 microbial
communities under investigation. Note that the fasted mouse communities (PC.6xx) cluster
together, and the result is supported by jackknife tests (red implies > 75% support).

Kuczynski et al. Page 27

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 12.
A Principal Coordinates plot of the 9 communities, showing jackknife-supported confidence
ellipsoids. The first two principal axes are shown.

Kuczynski et al. Page 28

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript




